If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+4x-536=0
a = 1; b = 4; c = -536;
Δ = b2-4ac
Δ = 42-4·1·(-536)
Δ = 2160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2160}=\sqrt{144*15}=\sqrt{144}*\sqrt{15}=12\sqrt{15}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-12\sqrt{15}}{2*1}=\frac{-4-12\sqrt{15}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+12\sqrt{15}}{2*1}=\frac{-4+12\sqrt{15}}{2} $
| 11x+4=2-3x+30 | | 18/50=n/100 | | C(x)=25+50 | | 15k-12k=15 | | -8x+8(4x-7)=-8 | | 1;1=-4+5s | | 88=47x | | 2-4x+-3+5x=180 | | 3(x-4)=x-10 | | 6h-6h+h-h-2h=6 | | 2-16x=6(3x+2) | | 9r=552 | | 2x+4(-4x-21)=0 | | 8x-4=5-x | | |x–3|=8 | | -4;2x=-8 | | 2x-47=15 | | 294w-1=-109w-30+4 | | -4/2-y=6 | | 8^x=(1/128)^(x-8) | | -20/n/4=-4 | | 5x+2x-4=x+7-3x | | 3=x*x*x*x | | P(n)=0.8n+5.2 | | -20;n÷4=-4 | | 3/5x-61/2=91/2 | | -20/n÷4=-4 | | 4x/x+4+3/x-1=15/x^2+3x-4 | | 5x+21=8 | | y2-2y=-4 | | 15x+.5=-144 | | 2(-4h-13)=37+136 |